Advertisements
Advertisements
प्रश्न
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.
पर्याय
33
37
43
47
उत्तर
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to 43.
Explanation:
Given relation is A1 . A3 . A5 . A7 = `1/1296`
Here, A4 = A1r3, ⇒ A1 = `A_4/r^3`.
Then, A3 = A1r2
A3 = `A_4/r`, A5 = A1r4, A5 = A4r, A7 = A1r6, A7 = A4r3
(A4)4 = `1/1296`; A4 = `1/6` ......(i)
Take A2 + A4 = `7/36`
Put the value of A2, A4 = `1/36` ......(ii)
Divide (i) by (ii),
r2 = 6
Now, A6 = A4r2 = `1/6 xx 6` = 1, A6 = 1
Similarly, A8 = 6, A10 = 36
Required is sum A6 + A8 + A10 = 43