English

Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = 11296 and A2 + A4 = 736, then the value of A6 + A8 + A10 is equal to ______. -

Advertisements
Advertisements

Question

Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 

Options

  • 33

  • 37

  • 43

  • 47

MCQ
Fill in the Blanks

Solution

Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to 43

Explanation:

Given relation is A1 . A3 . A5 . A7 = `1/1296`

Here, A4 = A1r3, ⇒ A1 = `A_4/r^3`.

Then, A3 = A1r2

A3 =  `A_4/r`, A5 = A1r4, A5 = A4r, A7 = A1r6, A7 = A4r3

(A4)4 = `1/1296`; A4 = `1/6`  ......(i)

Take A2 + A4 = `7/36`

Put the value of A2, A4 = `1/36`  ......(ii)

Divide (i) by (ii),

r2 = 6

Now, A6 = A4r2 = `1/6 xx 6` = 1, A6 = 1

Similarly, A8 = 6, A10 = 36

Required is sum A6 + A8 + A10 = 43

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×