मराठी

Let a and B Be Two Sets Such that : N ( a ) = 20 , N ( a ∪ B ) = 42 and N ( a ∩ B ) = 4 N ( B − a ) - Mathematics

Advertisements
Advertisements

प्रश्न

Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( B - A \right)\]

उत्तर

Given: 

\[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] 

\[ \text{ We know that sets follow the commutative property } . \]
\[ \therefore n(A \cap B) = n(B \cap A)\]
\[n(B - A) = n(B) - n(B \cap A)\]
\[ \Rightarrow n(B - A) = 26 - 4 = 22\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets - Exercise 1.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 1 Sets
Exercise 1.08 | Q 5.3 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

What universal set (s) would you propose for the following:

The set of right triangles.


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{0, 1, 2, 3, 4, 5, 6}


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

Φ


If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]


For any two sets A and B, prove that 

 B ⊂ A ∪ B         


For three sets AB and C, show that \[A \cap B = A \cap C\]


For three sets AB and C, show that \[A \subset B \Rightarrow C - B \subset C - A\] 


For any two sets, prove that: 

\[A \cup \left( A \cap B \right) = A\] 

 


Find sets AB and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]


For any two sets A and B, prove that: \[A \cap B = \phi \Rightarrow A \subseteq B'\] 


Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\] 


For any two sets of A and B, prove that: 

\[A' \cup B = U \Rightarrow A \subset B\] 


For any two sets of A and B, prove that: 

\[B' \subset A' \Rightarrow A \subset B\]


Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)


Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)


Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.


For any two sets A and B, prove that : 

\[A' - B' = B - A\] 


For any two sets A and B, prove the following: 

\[A \cap \left( A' \cup B \right) = A \cap B\] 


For any two sets A and B, prove the following: 

\[A - \left( A - B \right) = A \cap B\]


For any two sets A and B, prove the following:

\[A - B = A \Delta\left( A \cap B \right)\]


A survey shows that 76% of the Indians like oranges, whereas 62% like bananas. What percentage of the Indians like both oranges and bananas? 


In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: how many can speak Hindi only


In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: 

how many can speak English only. 


In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ D


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ D


If A and B are subsets of the universal set U, then show that A ⊂ A ∪ B


If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A


In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.


In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C


If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪ (A ∪ B) ∩ B′) is ______.


Given the sets A = {1, 3, 5}. B = {2, 4, 6} and C = {0, 2, 4, 6, 8}. Then the universal set of all the three sets A, B and C can be ______.


For all sets A and B, A – (A ∩ B) is equal to ______.


Match the following sets for all sets A, B, and C.

Column A Column B
(i) ((A′ ∪ B′) – A)′ (a) A – B
(ii) [B′ ∪ (B′ – A)]′ (b) A
(iii) (A – B) – (B – C) (c) B
(iv) (A – B) ∩ (C – B) (d) (A × B) ∩ (A × C)
(v) A × (B ∩ C) (e) (A × B) ∪ (A × C)
(vi) A × (B ∪ C) (f) (A ∩ C) – B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×