Advertisements
Advertisements
प्रश्न
Magnetic lines of force are closed continuous curves.
उत्तर
True.
APPEARS IN
संबंधित प्रश्न
How are the magnetic field lines different from the electrostatic field lines?
A bar magnet of length 1 cm and cross-sectional area 1.0 cm2 produces a magnetic field of 1.5 × 10−4 T at a point in end-on position at a distance 15 cm away from the centre. (a) Find the magnetic moment M of the magnet. (b) Find the magnetisation I of the magnet. (c) Find the magnetic field B at the centre of the magnet.
Answer the following question.
Write the four important properties of the magnetic field lines due to a bar magnet.
Choose the correct option.
Inside a bar magnet, the magnetic field lines
Solve the following problem.
A magnetic pole of a bar magnet with a pole strength of 100 A m is 20 cm away from the centre of a bar magnet. The bar magnet has a pole strength of 200 A m and has a length of 5 cm. If the magnetic pole is on the axis of the bar magnet, find the force on the magnetic pole.
Answer the following question in detail.
Two bar magnets are placed on a horizontal surface. Draw magnetic lines around them. Mark the position of any neutral points (points where there is no resultant magnetic field) on your diagram.
A closely wound solenoid of 800 turns and area of cross-section 2.5 × 10–4 m2 carries a current of 3.0 A. Explain the sense in which the solenoid acts like a bar magnet. What is its associated magnetic moment?
If the bar magnet is turned around by 180°, where will the new null points be located?
Which of the following statement about magnetic field lines is true?
In which case of comparing solenoid and bar magnet there is no exact similarity?
When a current is passed through a tangent galvanometer, it gives a deflection of 30° for 60° correction, the current must be
A magnetic needle suspended freely orients itself:-
A bar magnet of magnetic moment 3.0 Am is placed in a uniform magnetic field of 2 × 10-5T. If each pole of the magnet experience a force of 6 × 10-4 N, the length of the magnet is ______.
Magnetic dipole moment is a ______
A ball of superconducting material is dipped in liquid nitrogen and placed near a bar magnet. (i) In which direction will it move? (ii) What will be the direction of it’s magnetic moment?
There are two current carrying planar coils made each from identical wires of length L. C1 is circular (radius R) and C2 is square (side a). They are so constructed that they have same frequency of oscillation when they are placed in the same uniform B and carry the same current. Find a in terms of R.