Advertisements
Advertisements
प्रश्न
Making use of the cube root table, find the cube root
37800 .
उत्तर
We have: \[37800 = 2^3 \times 3^3 \times 175 \Rightarrow \sqrt[3]{37800} = \sqrt[3]{2^3 \times 3^3 \times 175} = 6 \times \sqrt[3]{175}\]
Also
\[170 < 175 < 180 \Rightarrow \sqrt[3]{170} < \sqrt[3]{175} < \sqrt[3]{180}\]
From cube root table, we have: \[\sqrt[3]{170} = 5 . 540 \text{ and } \sqrt[3]{180} = 5 . 646\]
For the difference (180 - 170), i.e., 10, the difference in values
Thus, the required cube root is 33.558.
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following number by the prime factorisation method.
110592
Using the method of successive subtraction examine whether or not the following numbers is perfect cube 792 .
\[\sqrt[3]{8 \times . . .} = 8\]
\[\sqrt[3]{\frac{512}{. . .}} = \frac{8}{13}\]
Evaluate:
\[\sqrt[3]{96} \times \sqrt[3]{144}\]
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 3048625 = 3375 × 729 .
Making use of the cube root table, find the cube root
8.6 .
Find the cube root of -1331.
The cube root of 540 × 50 is ___________
Each prime factor appears 3 times in its cube.