Advertisements
Advertisements
Question
Making use of the cube root table, find the cube root
37800 .
Solution
We have: \[37800 = 2^3 \times 3^3 \times 175 \Rightarrow \sqrt[3]{37800} = \sqrt[3]{2^3 \times 3^3 \times 175} = 6 \times \sqrt[3]{175}\]
Also
\[170 < 175 < 180 \Rightarrow \sqrt[3]{170} < \sqrt[3]{175} < \sqrt[3]{180}\]
From cube root table, we have: \[\sqrt[3]{170} = 5 . 540 \text{ and } \sqrt[3]{180} = 5 . 646\]
For the difference (180 - 170), i.e., 10, the difference in values
Thus, the required cube root is 33.558.
APPEARS IN
RELATED QUESTIONS
Find the cube root of the following number by the prime factorisation method.
512
Find the cube root of the following number by the prime factorisation method.
46656
\[\sqrt[3]{1728} = 4 \times . . .\]
\[\sqrt[3]{480} = \sqrt[3]{3} \times 2 \times \sqrt[3]{. . .}\]
\[\sqrt[3]{. . .} = \sqrt[3]{4} \times \sqrt[3]{5} \times \sqrt[3]{6}\]
\[\sqrt[3]{\frac{729}{1331}} = \frac{9}{. . .}\]
Three numbers are to one another 2 : 3 : 4. The sum of their cubes is 0.334125. Find the numbers.
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 210644875 = 42875 × 4913 .
The cube root of 0.000004913 is ___________
Using prime factorisation, find which of the following are perfect cubes.
1331