Advertisements
Advertisements
Question
Three numbers are to one another 2 : 3 : 4. The sum of their cubes is 0.334125. Find the numbers.
Solution
Let the numbers be 2x, 3x and 4x.
According to the question:
\[\left( 2x \right)^3 + \left( 3x \right)^3 + \left( 4x \right)^3 = 0 . 334125\]
\[ \Rightarrow 8 x^3 + 27 x^3 + 64 x^3 = 0 . 334125\]
\[ \Rightarrow 8 x^3 + 27 x^3 + 64 x^3 = 0 . 334125\]
\[ \Rightarrow 99 x^3 = 0 . 334125\]
\[ \Rightarrow x^3 = \frac{{334125}^{3375}}{1000000 \times 99}\]
\[ \Rightarrow x = \sqrt[3]{\frac{3375}{1000000}}\]
\[ \Rightarrow x = \frac{\sqrt[3]{3375}}{\sqrt[3]{1000000}}\]
\[ \Rightarrow x = \frac{15}{100} = 0 . 15 .\]
Thus, the numbers are:
\[2 \times 0 . 15 = 0 . 30 \]
\[3 \times 0 . 15 = 0 . 45\]
\[4 \times 0 . 15 = 0 . 60\]
APPEARS IN
RELATED QUESTIONS
Find the cube root of the following number by the prime factorisation method.
512
Find the cube root of the following number by the prime factorisation method.
10648
Find the cube root of the following number by the prime factorisation method.
91125
Using the method of successive subtraction examine whether or not the following numbers is perfect cube 130 .
\[\sqrt[3]{} . . . = \sqrt[3]{7} \times \sqrt[3]{8}\]
Evaluate:
Evaluate:
\[\sqrt[3]{121} \times \sqrt[3]{297}\]
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 57066625 = 166375 × 343 .
Making use of the cube root table, find the cube root
5112 .
Find the smallest number by which 26244 may be divided so that the quotient is a perfect cube.