Advertisements
Advertisements
प्रश्न
Three numbers are to one another 2 : 3 : 4. The sum of their cubes is 0.334125. Find the numbers.
उत्तर
Let the numbers be 2x, 3x and 4x.
According to the question:
\[\left( 2x \right)^3 + \left( 3x \right)^3 + \left( 4x \right)^3 = 0 . 334125\]
\[ \Rightarrow 8 x^3 + 27 x^3 + 64 x^3 = 0 . 334125\]
\[ \Rightarrow 8 x^3 + 27 x^3 + 64 x^3 = 0 . 334125\]
\[ \Rightarrow 99 x^3 = 0 . 334125\]
\[ \Rightarrow x^3 = \frac{{334125}^{3375}}{1000000 \times 99}\]
\[ \Rightarrow x = \sqrt[3]{\frac{3375}{1000000}}\]
\[ \Rightarrow x = \frac{\sqrt[3]{3375}}{\sqrt[3]{1000000}}\]
\[ \Rightarrow x = \frac{15}{100} = 0 . 15 .\]
Thus, the numbers are:
\[2 \times 0 . 15 = 0 . 30 \]
\[3 \times 0 . 15 = 0 . 45\]
\[4 \times 0 . 15 = 0 . 60\]
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following number by the prime factorisation method.
512
Find the cube root of the following number by the prime factorisation method.
91125
\[\sqrt[3]{480} = \sqrt[3]{3} \times 2 \times \sqrt[3]{. . .}\]
\[\sqrt[3]{\frac{27}{125}} = \frac{. . .}{5}\]
Evaluate:
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 3048625 = 3375 × 729 .
Making use of the cube root table, find the cube root
250.
Making use of the cube root table, find the cube root
7342 .
Making use of the cube root table, find the cube root
8.65 .
Using prime factorisation, find the cube roots of 2197