Advertisements
Advertisements
प्रश्न
Three numbers are to one another 2 : 3 : 4. The sum of their cubes is 0.334125. Find the numbers.
उत्तर
Let the numbers be 2x, 3x and 4x.
According to the question:
\[\left( 2x \right)^3 + \left( 3x \right)^3 + \left( 4x \right)^3 = 0 . 334125\]
\[ \Rightarrow 8 x^3 + 27 x^3 + 64 x^3 = 0 . 334125\]
\[ \Rightarrow 8 x^3 + 27 x^3 + 64 x^3 = 0 . 334125\]
\[ \Rightarrow 99 x^3 = 0 . 334125\]
\[ \Rightarrow x^3 = \frac{{334125}^{3375}}{1000000 \times 99}\]
\[ \Rightarrow x = \sqrt[3]{\frac{3375}{1000000}}\]
\[ \Rightarrow x = \frac{\sqrt[3]{3375}}{\sqrt[3]{1000000}}\]
\[ \Rightarrow x = \frac{15}{100} = 0 . 15 .\]
Thus, the numbers are:
\[2 \times 0 . 15 = 0 . 30 \]
\[3 \times 0 . 15 = 0 . 45\]
\[4 \times 0 . 15 = 0 . 60\]
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following number by the prime factorisation method.
91125
\[\sqrt[3]{8 \times . . .} = 8\]
\[\sqrt[3]{1728} = 4 \times . . .\]
\[\sqrt[3]{\frac{512}{. . .}} = \frac{8}{13}\]
Find the side of a cube whose volume is\[\frac{24389}{216} m^3 .\]
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 20346417 = 9261 × 2197 .
Making use of the cube root table, find the cube root
7342 .
Making use of the cube root table, find the cube root
8.6 .
Find the cube root of 13824 by prime factorisation method.
Using prime factorisation, find the cube roots of 512