Advertisements
Advertisements
प्रश्न
Making use of the cube root table, find the cube root
5112 .
उत्तर
By prime factorisation, we have: \[5112 = 2^3 \times 3^2 \times 71 \Rightarrow \sqrt[3]{5112} = 2 \times \sqrt[3]{9} \times \sqrt[3]{71}\]
By the cube root table, we have: \[\sqrt[3]{9} = 2 . 080 and \sqrt[3]{71} = 4 . 141\]
∴ \[\sqrt[3]{5112} = 2 \times \sqrt[3]{9} \times \sqrt[3]{71} = 2 \times 2 . 080 \times 4 . 141 = 17 . 227\] (upto three decimal places)
Thus, the required cube root is 17.227.
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following number by the prime factorisation method.
175616
\[\sqrt[3]{125 \times 27} = 3 \times . . .\]
\[\sqrt[3]{\frac{729}{1331}} = \frac{9}{. . .}\]
Find the side of a cube whose volume is\[\frac{24389}{216} m^3 .\]
Evaluate:
Making use of the cube root table, find the cube roots 7
Making use of the cube root table, find the cube root
0.27
Making use of the cube root table, find the cube root
8.6 .
Making use of the cube root table, find the cube root
8.65 .
Find the cube root of 8000.