Advertisements
Advertisements
प्रश्न
Marks obtained (in mathematics) by 9 student are given below:
60, 67, 52, 76, 50, 51, 74, 45 and 56
if marks of each student be increased by 4; what will be the new value of arithmetic mean.
उत्तर
If marks of each student be incresed by 4 then new arithmetic mean will be = 59+4=63
APPEARS IN
संबंधित प्रश्न
The marks of 10 students of a class in an examination arranged in ascending order is as follows:
13, 35, 43, 46, x, x + 4, 55, 61, 71, 80
If the median marks is 48, find the value of x. Hence, find the mode of the given data.
Using step-deviation method, calculate the mean marks of the following distribution.
C.I. | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
Find the mode of the following data:
9, 11, 8, 11, 16, 9, 11, 5, 3, 11, 17 and 8
Find the mean, median and mode of the following marks obtained by 16 students in a class test marked out of 10 marks:
0, 0, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7 and 8.
At a shooting competition the score of a competitor were as given below:
Score | 0 | 1 | 2 | 3 | 4 | 5 |
No. of shots | 0 | 3 | 6 | 4 | 7 | 5 |
- What was his modal score?
- What was his median score?
- What was his total score?
- What was his mean score?
The daily wages of 80 workers in a building project are given below :
Wages (Rs) | No.of workers |
30-40 | 6 |
40-50 | 10 |
50-60 | 15 |
60-70 | 19 |
70-80 | 12 |
80-90 | 8 |
90-100 | 6 |
100-110 | 4 |
Using graph paper, draw an ogive for the above distribution. Use your ogive, to estimate :
(1) the mediam wages of workers
(2) the percentage of workers who earn more than Rs 75 a day.
(3) the upper quartile wages of the workers
(4) the lower quartile wages of the workers
(5) Inter quartile range
In a case of 40 students, marks obtained by the students in a class test (out of 10) are given below:
Marks | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Number of students | 1 | 2 | 3 | 3 | 6 | 10 | 5 | 4 | 3 | 3 |
Calculate the following for the given distribution:
(i) Median
(ii) Mode
The mean of a certain number of observations is 32. Find the resulting mean, if the observation is, increased by 3
Find the mean of: 7, 10, 4 and 17
Find the median of 21, 21, 22, 23, 23, 24, 24, 24, 24, 25 and 25