Advertisements
Advertisements
प्रश्न
निम्नलिखित कथन सत्य हैं और असत्य हैं ये बताएँ? अपने उत्तर के लिए वैध कारण बताएँ:
q: किसी वृत्त का केंद्र वृत्त की प्रत्येक जीवा को समद्विभाजित करता है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन असत्य हैं।
कारण:
वृत्त का केंद्र केवल व्यास को समद्विभाजित करता है। प्रत्येक जीवा केंद्र से होकर नहीं जाती है। अतः वृत्त का केंद्र प्रत्येक जीवा को समद्विभाजित नहीं करता है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि कथन यदि x एक ऐसी वास्तविक संख्या है कि x3 + 4x = 0, तो x = 0
- प्रत्यक्ष विधि द्वारा
- विरोधोक्ति द्वारा
- प्रतिधनात्मक कथन द्वारा
प्रत्युदाहरण द्वारा सिद्ध कीजिए कि कथन “किसी भी ऐसी वास्तविक संख्याओं a और b के लिए, जहाँ a2 = b2, का तात्पर्य है कि a = b” सत्य नहीं है।
प्रतिधनात्मक विधि द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य है,
p: यदि x एक पूर्णांक है और x2 सम है, तो x भी सम है।
प्रत्युदाहरण द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य नहीं है,
p: यदि किसी त्रिभुज के कोण समान हैं, तो त्रिभुज एक अधिक कोण त्रिभुज है।
प्रत्युदाहरण द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य नहीं है,
q: समीकरण x2 – 1 = 0 के मूल 0 और 2 के बीच स्थित नहीं है।
निम्नलिखित कथन सत्य हैं और असत्य हैं ये बताएँ? अपने उत्तर के लिए वैध कारण बताएँ:
r: एक वृत्त, किसी दीर्घवृत्त की एक विशेष स्थिति है।
निम्नलिखित कथन सत्य हैं और असत्य हैं ये बताएँ? अपने उत्तर के लिए वैध कारण बताएँ:
s: यदि x और y ऐसे पूर्णांक है कि x > y, तो –x < –y है।
निम्नलिखित कथन सत्य हैं और असत्य हैं ये बताएँ? अपने उत्तर के लिए वैध कारण बताएँ:
t: `sqrt11` एक परिमेय संख्या है।
नीचे लिखे कथन की वैधता की जाँच उनके सामने लिखित विधि द्वारा कीजिए।
p: एक अपरिमेय संख्या और एक परिमेय संख्या का योगफल अपरिमेय होता है। (विरोधोक्ति विधि)
नीचे लिखे कथन की वैधता की जाँच उनके सामने लिखित विधि द्वारा कीजिए।
q: यदि n एक ऐसी वास्तविक संख्या है कि n > 3, तो n2 > 9। (विरोधोक्ति विधि)
निम्नलिखित कथन को पाँच भिन्न-भिन्न तरीकों से इस प्रकार व्यक्त कीजिए कि उनके अर्थ समान हों,
q: 'यदि एक त्रिभुज समान कोणिक है, तो वह एक अधिक कोण त्रिभुज है।'