Advertisements
Advertisements
प्रश्न
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^1 x/(x^2 + 1) dx`
उत्तर
माना `int_0^1 x/(x^2 + 1) "dx"`
x2 + 1 = t रखने पर,
2x dx = dt
जब x = 1, t = 2; x = 0, t = 1
`therefore I = int_1^2 "dt"/"t"`
∴ `I = 1/2 int_1^2 dt/t = [1/2 log t]_1^2`
`= 1/2 [log 2 - log 1]`
`= 1/2 log 2`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^(pi/2) sqrtsin phi cos^5 phi d phi`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^1 sin^-1 ((2x)/(1 + x^2)) dx`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^2 xsqrt(x + 2) dx` (x + 2 = t2 रखिए)
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^(pi/2) (sin x)/(1 + cos^2 x)` dx
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^2 dx/(x + 4 - x^2)`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_-1^1 dx/(x^2 + 2x + 5)`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_1^2 (1/x - 1/(2x^2)) e^(2x) dx`
समाकलन `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` का मान है:
यदि f(x) `= int_0^x t sin t dt` है, तब f'(x) है: