Advertisements
Advertisements
प्रश्न
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^2 xsqrt(x + 2) dx` (x + 2 = t2 रखिए)
उत्तर
माना `I = int_0^2 x sqrt (x + 2) dx`
x + 2 = t रखने पर,
⇒ dx = dt
x = 0, t = 2 तथा, जब x = 2, t = 4
∴ `I = int_2^4 (t - 2) sqrtt dt `
`= int_2^4 (t^(3/2) - 2t^(1/2)) dt`
`= [2/5 t^(5/2) - 2 xx 2/3 t^(3/2)]_2^4`
`= [2/5 (4)^(5/2) - 4/3 t^(3/2)]_2^4`
`= [2/5 (4)^(5/2) - 4/3 (4)^(3/2)] - [2/5 (2)^(5/2) = 4/3 (2)^(3/2)]`
`= 2/5 (2)^5 - 4/3 (2)^3 - 2/5 xx 4sqrt2 + 4/3 xx 2sqrt2`
`= 2/5 xx 32 - 4/3 xx 8 - 8/5 sqrt2 + 8/3 sqrt2`
`= 64/5 - 32/3 - (8/5 sqrt2 - 8/3 sqrt2)`
`= (192 - 160)/15 - ((24sqrt2 - 40sqrt2))/15`
`= 32/15 + (16sqrt2)/15`
`= 16/15 (2+sqrt2)`
या `(16sqrt2)/15 (sqrt2+1)`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^1 x/(x^2 + 1) dx`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^(pi/2) sqrtsin phi cos^5 phi d phi`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^1 sin^-1 ((2x)/(1 + x^2)) dx`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^(pi/2) (sin x)/(1 + cos^2 x)` dx
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_0^2 dx/(x + 4 - x^2)`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_-1^1 dx/(x^2 + 2x + 5)`
निम्नलिखित प्रश्न में समाकलन का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए-
`int_1^2 (1/x - 1/(2x^2)) e^(2x) dx`
समाकलन `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` का मान है:
यदि f(x) `= int_0^x t sin t dt` है, तब f'(x) है: