मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

O is any point inside a triangle ABC. The bisector of ∠AOB, ∠BOC and ∠COA meet the sides AB, BC and CA in point D, E and F respectively. Show that AD × BE × CF = DB × EC × FA - Mathematics

Advertisements
Advertisements

प्रश्न

O is any point inside a triangle ABC. The bisector of ∠AOB, ∠BOC and ∠COA meet the sides AB, BC and CA in point D, E and F respectively. Show that AD × BE × CF = DB × EC × FA

बेरीज

उत्तर

In ∆ABC the bisector meets AB at D, BC at E and AC at F.

The angle bisector AO, BO and CO intersect at “O”.

By Cevas Theorem

`"AD"/"DB" xx "BF"/"EC" xx "CF"/"AF"` = 1

AD × BE × CF = DB × EC × AF

Hence it is proved

shaalaa.com
Concurrency Theorems
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Geometry - Unit Exercise – 4 [पृष्ठ २००]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 4 Geometry
Unit Exercise – 4 | Q 3 | पृष्ठ २००
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×