Advertisements
Advertisements
प्रश्न
Obtain all other zeroes of `(x^4 + 4x^3 – 2x^2 – 20x – 15)` if two of its zeroes are `sqrt5 and –sqrt5.`
उत्तर
The given polynomial is` f(x) = x^4 + 4x^3 – 2x^2 – 20x – 15.`
Since `(x – sqrt5) and (x + sqrt5)` are the zeroes of f(x) it follows that each one of `(x – sqrt5) and (x + sqrt5)` is a factor of f(x).
Consequently, `(x – sqrt5) (x + sqrt5) = (x2 – 5)` is a factor of f(x).
On dividing f(x) by (x2 – 5), we get:
`f(x) = 0`
`⇒ x^4 + 4x^3 – 7x^2 – 20x – 15 = 0`
`⇒ (x^2 – 5) (x2 + 4x + 3) = 0`
`⇒ (x – sqrt5) (x + sqrt5) (x + 1) (x + 3) = 0`
`⇒ x = sqrt5 or x = -sqrt5 or x = -1 or x = -3`
Hence, all the zeroes are sqrt5, -sqrt5, -1 and -3.
APPEARS IN
संबंधित प्रश्न
The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x).
If one zero of the quadratic polynomial `kx^2 + 3x + k is 2`, then find the value of k.
Write the zeros of the polynomial `f(x) = x^2 – x – 6`.
If the sum of the zeros of the quadratic polynomial `kx^2-3x + 5` is 1 write the value of k..
If one of the zeroes of the quadratic polynomial (k – 1) x2 + kx + 1 is - 3, then the value of k is ______.
The number of polynomials having zeroes as -2 and 5 is ______.
The zeroes of the quadratic polynomial x² + 1750x + 175000 are ______.
A polynomial of degree n has ______.
If α and β are the zeroes of the polynomial x2 – 1, then the value of (α + β) is ______.
The number of polynomials having zeroes – 3 and 4 is ______.