Advertisements
Advertisements
प्रश्न
Obtain the Cartesian form of the locus of z = x + iy in the following cases:
|z + i| = |z – 1|
उत्तर
z = x + iy
|z + i| = |z – 1|
⇒ |x + iy + i| = | x + iy – 1|
⇒ |x + i(y + 1)| = |(x – 1) + iy|
Squaring on both sides
|x + i(y + 1)|2 = |(x – 1) + iy|2
⇒ x2 + (y + 1)2 = (x – 1)2 + y2
⇒ x2 + y2 + 2y + 1 = x2 – 2x + 1 + y2
⇒ 2y + 2x = 0
⇒ x + y = 0
APPEARS IN
संबंधित प्रश्न
If 2 = x + iy is a complex number such that `|(z - 4"i")/(z + 4"i")|` = 1 show that the locus of z is real axis
If z = x + iy is a complex number such that Im `((2z + 1)/("i"z + 1))` = 0, show that the locus of z is 2x2 + 2y2 + x – 2y = 0
Obtain the Cartesian form of the locus of z = x + iy in the following cases:
[Re(iz)]2 = 3
Obtain the Cartesian form of the locus of z = x + iy in the following cases:
Im[(1 – i)z + 1] = 0
Show that the following equations represent a circle, and, find its centre and radius.
|z – 2 – i| = 3
Show that the following equations represent a circle, and, find its centre and radius.
|2z + 2 – 4i| = 2
Obtain the Cartesian equation for the locus of z = x + iy in the following cases:
|z – 4| = 16
Obtain the Cartesian equation for the locus of z = x + iy in the following cases:
|z – 4|2 – |z – 1|2 = 16
Choose the correct alternative:
If `|"z" - 3/2|`, then the least value of |z| is
Choose the correct alternative:
If |z| = 1, then the value of `(1 + "z")/(1 + "z")` is
Choose the correct alternative:
If z = x + iy is a complex number such that |z + 2| = |z – 2|, then the locus of z is
Choose the correct alternative:
The principal argument of the complex number `((1 + "i" sqrt(3))^2)/(4"i"(1 - "i" sqrt(3))` is