मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

If 2 = x + iy is a complex number such that ii|z-4iz+4i| = 1 show that the locus of z is real axis - Mathematics

Advertisements
Advertisements

प्रश्न

If 2 = x + iy is a complex number such that `|(z - 4"i")/(z + 4"i")|` = 1 show that the locus of z is real axis

बेरीज

उत्तर

`|(z - 4"i")/(z + 4"i")|` = 1

⇒ |z – 4i| = |z + 4i|

Let z = x + iy

⇒ |x + iy – 4i| = |x + iy + 4i|

⇒ |x + i(y – 4)| = |x +(y + 4)|

⇒ `sqrt(x^2 + (y - 4)^2`

= `sqrt(x^2 + (y + 4)^2`

Squaring on both sides, we get

x2 + y2 – 8y + 16 = x2 + y2 + 16 + 8y

⇒ – 16y = 0

⇒ y = 0 in two equation of real axis.

shaalaa.com
Geometry and Locus of Complex Numbers
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Complex Numbers - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 2 Complex Numbers
Exercise 2.6 | Q 1 | पृष्ठ ७५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×