मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Show that the following equations represent a circle, and, find its centre and radius. |3z – 6 + 12i| = 8 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following equations represent a circle, and, find its centre and radius.

|3z – 6 + 12i| = 8 

बेरीज

उत्तर

|3(x + iy) – 6 + 12i| = 8

⇒ |3x + i3y – 6 + 12i| = 8

⇒ |3(x – 2) + i3 (y + 4)| = 8

⇒ 3|(x – 2) + i (y + 4)| = 8

⇒ `3sqrt((x  2)^2 + (y + 4)^2` = 8

Squaring on both sides,

9[(x – 2)2 + (y + 4)2] = 64

⇒ x2 – 4x + 4 + y2 + 8y + 16 = `64/9`

x2 + y2 – 4x + 8y + `116/9` = 0 represents a circle.

2g = – 4

⇒ g = – 2

2f = 8

⇒ f = 4

c = `116/9`

(a) Centre (– g, – f)

= (2, – 4)

= 2 – 4i

(b) Radius = `sqrt("g"^2 + "f"^2 - "c")`

= `sqrt(4 + 16 - 116/9)`

= `sqrt((180 - 116)/9)`

= `8/3`

Aliter:

|z – 2 + 4i| = `8/3`

⇒ |z – (2 – 4i)| = `8/3`

Centre = 2 – 4i

Radius = `8/3`

shaalaa.com
Geometry and Locus of Complex Numbers
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Complex Numbers - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 2 Complex Numbers
Exercise 2.6 | Q 4. (iii) | पृष्ठ ७५

संबंधित प्रश्‍न

If 2 = x + iy is a complex number such that `|(z - 4"i")/(z + 4"i")|` = 1 show that the locus of z is real axis


If z = x + iy is a complex number such that Im `((2z + 1)/("i"z + 1))` = 0, show that the locus of z is 2x2 + 2y2 + x – 2y = 0


Obtain the Cartesian form of the locus of z = x + iy in the following cases:

[Re(iz)]2 = 3


Obtain the Cartesian form of the locus of z = x + iy in the following cases:

Im[(1 – i)z + 1] = 0


Obtain the Cartesian form of the locus of z = x + iy in the following cases:

|z + i| = |z – 1|


Obtain the Cartesian form of the locus of z = x + iy in the following cases:

`bar(z) = z^-1`


Show that the following equations represent a circle, and, find its centre and radius.

|2z + 2 – 4i| = 2


Obtain the Cartesian equation for the locus of z = x + iy in the following cases:

|z – 4| = 16


Obtain the Cartesian equation for the locus of z = x + iy in the following cases:

|z – 4|2 – |z – 1|2 = 16


Choose the correct alternative:

If  `|"z" - 3/2|`, then the least value of |z| is


Choose the correct alternative:

If |z| = 1, then the value of  `(1 + "z")/(1 + "z")` is


Choose the correct alternative:

If |z1| = 1,|z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


Choose the correct alternative:

If z = x + iy is a complex number such that |z + 2| = |z – 2|, then the locus of z is


Choose the correct alternative:

The principal argument of the complex number `((1 + "i" sqrt(3))^2)/(4"i"(1 - "i" sqrt(3))` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×