मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Obtain the differential equations by eliminating arbitrary constants from the following equations. y = c1e 3x + c2e 2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equations by eliminating arbitrary constants from the following equations.

y = c1e 3x + c2e 2x

बेरीज

उत्तर

y = c1e 3x + c2e 2x

Dividing throughout by e2x , we get

ye -2x = c1e x + c2

Differentiating w.r.t. x, we get

`-2ye^ -2x + e^-2x dy/dx = c_1e^ x`

∴ `e^-2x(dy/dx-2y) = c_1e^x`

Dividing throughout by ex , we get

`e^-3x(dy/dx - 2y) = c_1`

Again, differentiating w.r.t. x, we get

`e^-3x((d^2y)/dx^2 - 2 dy/dx) - 3e^(-3x)(dy/dx- 2y ) = 0`

∴ `e^-(3x)((d^2y)/dx^2 - 2 dy/dx-3 dy/dx+ 6y ) = 0`

∴ `(d^2y)/dx^2- 5dy/dx + 6y = 0`

shaalaa.com
Formation of Differential Equation by Eliminating Arbitary Constant
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.2 | Q 1.4 | पृष्ठ १६३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×