मराठी

ऊँचाई 2.4 सेमी और व्यास 1.4 सेमी वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल काट लिया जाता है। शेष बचे ठोस का निकटम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

ऊँचाई 2.4 सेमी और व्यास 1.4 सेमी वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल काट लिया जाता है। शेष बचे ठोस का निकटम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।  

[उपयोग π = `22/7`]

बेरीज

उत्तर

मान लीजिये,

शंक्वाकार भाग की ऊँचाई (h) = बेलनाकार भाग की ऊँचाई (h) = 2.4 cm

बेलनाकार भाग का व्यास = 1.4 सेमी

अत: बेलनाकार भाग की त्रिज्या (r) = 0.7 cm

शंक्वाकार भाग की तिरछी ऊँचाई (l) = `sqrt(r^2+h^2)`

`= sqrt((0.7)^2+(2.4)^2) `

`=sqrt(0.49+5.76)` 

`=sqrt(6.25)`

= 2.5

शेष ठोस का कुल पृष्ठीय क्षेत्रफल होगा = बेलनाकार भाग का CSA + शंक्वाकार भाग का CSA + बेलनाकार आधार का क्षेत्रफल

= 2πrh + πrl + πr2

`= 2 xx 22/7 xx 0.7 xx 2.4+22/7 xx 0.7 xx 2.5+22/7 xx 0.7 xx 0.7`

= `4.4 xx 2.4 + 2.2 xx 2.5 + 2.2 xx 0.7`

= 10.56 + 5.50 + 1.54

= 17.60 cm2

शेष ठोस का निकटतम सेमी2 का कुल पृष्ठीय क्षेत्रफल 18 सेमी2 है।

shaalaa.com
ठोसों के संयोजन का पृष्ठीय क्षेत्रफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: पृष्ठीय क्षेत्रफल और आयतन - प्रश्नावली 13.1 [पृष्ठ २६९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 13 पृष्ठीय क्षेत्रफल और आयतन
प्रश्नावली 13.1 | Q 8. | पृष्ठ २६९

संबंधित प्रश्‍न

दवा का एक कैप्सूल एक बेलन के आकार का है जिसके दोनों सिरों पर एक - एक अर्धगोला लगा हुआ है। पूरे कैप्सूल की लंबाई 14 मिमी है और उसका व्यास 5 मिमी है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।   [उपयोग `pi = 22/7`]


एक साहुल निम्नलिखित का संयोजन है:


गिल्ली-डंडे के खेल में, गिल्ली का आकार निम्नलिखित का संयोजन है-


विमाओं 49 cm × 33 cm × 24 cm के घनाभ के आकार के लोहे के किसी ठोस टुकड़े को पिघलाकर एक ठोस गोले के रूप में ढाला जाता है। गोले की त्रिज्या ______ है।


तिर्यक ऊँचाई 45 cm वाली एक बाल्टी के ऊपरी और निचले सिरों की त्रिज्याएँ क्रमशः 28 cm और 7 cm हैं। इस बाल्टी का वक्र पृष्ठीय क्षेत्रफल ______ है।


एक ही आधार त्रिज्या r वाले दो ठोस अर्धगोलों को उनके आधारों के अनुदिश जोड़ दिया गया है। तब नये ठोस का वक्र पृष्ठीय क्षेत्रफल ______ है।


दो गोलों के आयतनों का अनुपात 64 : 27 है। उनके पृष्ठीय क्षेत्रफलों का अनुपात ______ है।


समान आधार त्रिज्या r वाले दो सर्वसम ठोस अर्धगोलों को उनके आधारों के अनुदिश जोड़ दिया गया है। इस संयोजन का कुल पृष्ठीय क्षेत्रफल 6πr2 है।


त्रिज्या r और ऊँचाई h वाले एक ठोस शंकु को उसी आधार त्रिज्या और ऊँचाई वाले एक ठोस बेलन के ऊपर रखा जाता है, जो शंकु की हैं। संयोजित ठोस का कुल पृष्ठीय क्षेत्रफल `pir[sqrt(r^2 + h^2) + 3r + 2h]` है।


एक बेलनाकार बर्तन, जिसकी तली में अर्धगोलाकार भाग आकृति में दर्शाए अनुसार ऊपर की ओर उठा हुआ है, की धारिता `(πr^2)/3[3h - 2r]` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×