Advertisements
Advertisements
प्रश्न
A spacecraft consumes more fuel in going from the earth to the moon than it takes for a return trip. Comment on this statement.
उत्तर
Yes, a spacecraft consumes more fuel in going from the Earth to the Moon than it takes for the return trip. In going from the Earth to the Moon, the spacecraft has to overcome the gravitational pull of the earth. So, more fuel is consumed in going from the Earth to Moon. However, in the return trip, this gravitation pull helps the spacecraft to come back to the Earth.
APPEARS IN
संबंधित प्रश्न
Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?
At what rate should the earth rotate so that the apparent g at the equator becomes zero? What will be the length of the day in this situation?
A Mars satellite moving in an orbit of radius 9.4 × 103 km takes 27540 s to complete one revolution. Calculate the mass of Mars.
A satellite of mass 1000 kg is supposed to orbit the earth at a height of 2000 km above the earth's surface. Find (a) its speed in the orbit, (b) is kinetic energy, (c) the potential energy of the earth-satellite system and (d) its time period. Mass of the earth = 6 × 1024kg.
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
Answer the following question in detail.
State any four applications of a communication satellite.
Derive an expression for the binding energy of a body at rest on the Earth’s surface of a satellite.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
Solve the following problem.
What is the gravitational potential due to the Earth at a point which is at a height of 2RE above the surface of the Earth?
(Mass of the Earth is 6 × 1024 kg, radius of the Earth = 6400 km and G = 6.67 × 10–11 N m2 kg–2)
The ratio of energy required to raise a satellite of mass 'm' to a height 'h' above the earth's surface of that required to put it into the orbit at same height is ______.
[R = radius of the earth]
Which of the following statements is CORRECT in respect of a geostationary satellite?
The kinetic energy of a revolving satellite (mass m) at a height equal to thrice the radius of the earth (R) is ______.
There is no atmosphere on moon because ____________.
A geostationary satellite is orbiting the earth at the height of 6R above the surface of earth. R being radius of earth. The time period of another satellite at a height of 2.5 R from the surface of earth is ____________.
Two satellites of masses m and 4m orbit the earth in circular orbits of radii 8r and r respectively. The ratio of their orbital speeds is ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
Out of following, the only correct statement about satellites is ____________.
A geostationary satellite is orbiting the earth at a height 6R above the surface of the earth, where R is the radius of the earth. This time period of another satellite at a height (2.5 R) from the surface of the earth is ______.