मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b. - Algebra

Advertisements
Advertisements

प्रश्न

Polynomials bx+ x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.

बेरीज

उत्तर

Let p(x) = bx+ x + 5 and q(x) = bx3 - 2x + 5.

The remainder when p(x) = bx+ x + 5 is divided by (x − 3) is m.

By remainder theorem, 
Remainder = p(3) = m

∴ b × (3)2 + 3 + 5 = m

⇒ m = 9b + 8        ...(1)

The remainder when q(x) = bx3 − 2x + 5 is divided by (x - 3) is n.

By remainder theorem, 

Remainder = q(3) = n

∴ b × (3)3 − 2 × 3 + 5 = n

⇒ n = 27b − 6 + 5

⇒ n = 27b − 1   ...(2)

Now, 

m − n = 0

⇒ (9b + 8) - (27b − 1) = 0     [Using (1) and (2)]

⇒ 9b − 27b + 8 + 1 = 0

⇒ −18b + 9 = 0

⇒ −18b = −9

`⇒ b = (−9)/(−18) = 1/2`

Thus, the value of b is `1/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Polynomials - Problem Set 3 [पृष्ठ ५६]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
पाठ 3 Polynomials
Problem Set 3 | Q (12) | पृष्ठ ५६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×