मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

Prove that 2n + 6 × 9n is always divisible by 7 for any positive integer n - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that 2n + 6 × 9n is always divisible by 7 for any positive integer n

बेरीज

उत्तर

21 + 6 × 91 = 2 + 54 = 56 is divisible by 7

When n = k,

2k + 6 × 9k = 7m  .....[where m is a scalar]

⇒ 6 × 9k = 7m – 2k …(1)

Let us prove for n = k + 1

Consider 2k+1 + 6 × 9k+1 = 2k+1 + 6 × 9k × 9

= 2k+1 + (7m – 2k)9 ..........(using (1))

= 2k+1 + 63m – 9.2k = 63m + 2k.21 – 9.2k

= 63m – 2k (9 – 2) = 63m – 7.2k

= 7(9m – 2k) which is divisible by 7

∴ 2n + 6 × 9n is divisible by 7 for any positive integer n

shaalaa.com
Modular Arithmetic
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Numbers and Sequences - Exercise 2.3 [पृष्ठ ५१]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 2 Numbers and Sequences
Exercise 2.3 | Q 8 | पृष्ठ ५१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×