मराठी

Prove that for Any Prime Positive Integer P, √ P is an Irrational Number. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that for any prime positive integer p, \[\sqrt{p}\]

 is an irrational number.

जोड्या लावा/जोड्या जुळवा

उत्तर

Let us assume that `sqrtq` is rational .Then, there exist positive co primes a and b such that

`sqrtq=a/b`

`p= (a/b)^2`

`⇒ p = a^2/b^2`

`⇒ pb^2=a^2`

`⇒ pb^2=a^2`

`⇒  p|a^2`

`⇒  p|a`

`⇒  a= pc`for some positive intger c

`⇒ b^2p=a^2`

`⇒ b^2 p = p^2c^2(because a= pc)`

`⇒ p|b^2(since p|c^2p)`

`⇒ p|b`

`⇒ p|a and  p|b`

This contradicts the fact that a and b are co priumes 

Hence `sqrtp`is irrational 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.5 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.5 | Q 11 | पृष्ठ ४९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×