मराठी

If P, Q Are Prime Positive Integers, Prove that √ P + √ Q is an Irrational Number. - Mathematics

Advertisements
Advertisements

प्रश्न

If p, q are prime positive integers, prove that \[\sqrt{p} + \sqrt{q}\] is an irrational number.

संख्यात्मक

उत्तर

Let us assume that  `sqrtp+sqrtq` is rational. Then, there exist positive co primes a and b such that 

`sqrtp +sqrtq=a/b`

`sqrtp=a/b-sqrtq`

`(sqrtp)^2= (a/b-sqrtq)^2`

`p= (a/b)^2-(2asqrtq)/b+q`

`p-q=(a/b)^2-(2asqrtq)/b`

`p-q=(a/b)^2-(2asqrtq)/b`

`(a/b)-(p-q)= (2asqrtq)/b`

`(a^2-b^2(p-q))/b^2 = (2asqrtq)/b`

`(a^2-b^2(p-q))/b^2(b/(2a))=sqrta`

`sqrtq=((a^2-b^2(p-q))/(2ab))`

Here we see that  `sqrtq` is a rational number which is a contradiction as we know that  `sqrtq` is an irrational number

Hence `sqrtp+sqrtq` is irrational

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.5 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.5 | Q 12 | पृष्ठ ४९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×