Advertisements
Advertisements
प्रश्न
Prove that: If the angles of a triangle are 45° – 45° – 90°, then each of the perpendicular sides is \[\frac{1}{\sqrt{2}}\]times the hypotenuse.”
उत्तर
Let ABC be the required triangle with
\[\angle\]B = 90º and
\[\angle\]A =
\[\angle\]C = 45º.
To prove:
\[AB = BC = \frac{1}{\sqrt{2}}AC\]
Proof:
\[\angle\]A =
\[\angle\]C = 45º
So, AB = BC (Sides opposite to equal angles are equal)
\[{AB}^2 + {BC}^2 = {AC}^2 \]
\[ \Rightarrow {AB}^2 + {AB}^2 = {AC}^2 \]
\[ \Rightarrow 2 {AB}^2 = {AC}^2 \]
\[ \Rightarrow AB = \frac{1}{\sqrt{2}}AC\]
\[ \Rightarrow AB = BC = \frac{1}{\sqrt{2}}AC\]
\[ \Rightarrow {AB}^2 + {AB}^2 = {AC}^2 \]
\[ \Rightarrow 2 {AB}^2 = {AC}^2 \]
\[ \Rightarrow AB = \frac{1}{\sqrt{2}}AC\]
\[ \Rightarrow AB = BC = \frac{1}{\sqrt{2}}AC\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
For the angle in standard position if the initial arm rotates 25° in anticlockwise direction, then state the quadrant in which terminal arm lies (Draw the figure and write the answer).
If `theta = 45^@`, then find `tan theta`.
The terminal is in II (second ) quadrant. what is the possible measure of an angle?
For the angle in standard position if the initial arm rotates 305° in an anticlockwise direction, then state the quadrant in which the terminal arm lies.