मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

Prove that n2 – n divisible by 2 for every positive integer n - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that n2 – n divisible by 2 for every positive integer n

बेरीज

उत्तर

To prove n2 – n divisible by 2 for every positive integer n.

We know that any positive integer is of the form 2q or 2q + 1, for some integer q.

So, following cases arise:

Case I :

When n = 2q.

In this case, we have

n2 – n = (2q)2 – 2q = 4q2 – 2q = 2q(2q – 1)

⇒ n2 – n = 2r where r = q(2q – 1)

⇒ n2 – n is divisible by 2.

Case II :

When n = 2q + 1.

In this case, we have

n2 – n = (2q + 1)2 – (2q + 1)

= (2q + 1)(2q + 1 – 1) = (2q + 1)2q

⇒ n2 – n = 2r where r = q (2q + 1)

⇒ n2 – n is divisible by 2.

Hence n2 – n is divisible by 2 for every positive integer n.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Numbers and Sequences - Unit Exercise – 2 [पृष्ठ ८३]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 2 Numbers and Sequences
Unit Exercise – 2 | Q 1 | पृष्ठ ८३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×