मराठी

Prove that the Square of Any Positive Integer is of the Form 3m Or, 3m + 1 but Not of the Form 3m +2. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the square of any positive integer is of the form 3m or, 3m + 1 but not of the form 3m +2.

उत्तर

By Euclid’s division algorithm

a = bq + r, where 0 ≤ r ≤ b

Put b = 3

a = 3q + r, where 0 ≤ r ≤ 3

If r = 0, then a = 3q

If r = 1, then a = 3q + 1

If r = 2, then a = 3q + 2

Now, (3q)2 = 9q2

= 3 × 3q2

= 3m, where m is some integer

(3q + 1)2 = (3q)2 + 2(3q)(1) + (1)2

= 9q2 + 6q + 1

= 3(3q2 + 2q) + 1

= 3m + 1, where m is some integer

(3q + 2)2 = (3q)2 + 2(3q)(2) + (2)2

= 9q2 + 12q + 4

= 9q2 + 12q + 4

= 3(3q2 + 4q + 1) + 1

= 3m + 1, hwrer m is some integer

Hence the square of any positive integer is of the form 3m, or 3m +1

But not of the form 3m + 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.1 | Q 7 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×