मराठी

Prove that the Square of Any Positive Integer is of the Form 4q Or 4q + 1 for Some Integer Q. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the square of any positive integer is of the form 4q or 4q + 1 for some integer q.

उत्तर

By Euclid’s division Algorithm

a = bm + r, where 0 ≤ r ≤ b

Put b = 4

a = 4m + r, where 0 ≤ r ≤ 4

If r = 0, then a = 4m

If r = 1, then a = 4m + 1

If r = 2, then a = 4m + 2

If r = 3, then a = 4m + 3

Now, (4m)2 = 16m2

= 4 × 4m2

= 4q where q is some integer

(4m + 1)2 = (4m)2 + 2(4m)(1) + (1)2

= 16m2 + 8m + 1

= 4(4m2 + 2m) + 1

= 4q + 1 where q is some integer

(4m + 2)2 = (4m)2 + 2(4m)(2)+(2)2

= 16m2 + 24m + 9

= 16m2 + 24m + 8 + 1

= 4(4m2 + 6m + 2) + 1

= 4q + 1, where q is some integer

Hence, the square of any positive integer is of the form 4q or 4q + 1 for some integer m

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.1 | Q 8 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×