Advertisements
Advertisements
प्रश्न
Prove that the medians corresponding to equal sides of an isosceles triangle are equal.
बेरीज
उत्तर
Let ABC be an isosceles triangle with AB = AC.
Let D and E be the mid points of AB and AC.
Join BE and CD.
Then BE and CD are the medians of this isosceles triangle.
In ΔABE and ΔACD
AB = AC ...(given)
AD = AE ...(D and E are mid points of AB and AC)
∠A = ∠A ...(common angle)
Therefore, ΔABE ≅ ΔACD ...(SAS criteria)
Hence, BE = CD.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?