हिंदी

Prove that the Medians Corresponding to Equal Sides of an Isosceles Triangle Are Equal. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the medians corresponding to equal sides of an isosceles triangle are equal.

योग

उत्तर


Let ABC be an isosceles triangle with AB = AC.
Let D and E be the mid points of AB and AC.
Join BE and CD.
Then BE and CD are the medians of this isosceles triangle.
In ΔABE and ΔACD
AB = AC   ...(given)
AD = AE  ...(D and E are mid points of AB and AC)
∠A = ∠A  ...(common angle)
Therefore, ΔABE ≅ ΔACD  ...(SAS criteria)
Hence, BE = CD.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Isosceles Triangle - Exercise 12.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 12 Isosceles Triangle
Exercise 12.1 | Q 7
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×