मराठी

Prove the following identities: 1-secθ+tanθ1+secθ-tanθ=secθ+tanθ-1secθ+tanθ+1 -

Advertisements
Advertisements

प्रश्न

Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`

बेरीज

उत्तर

We know that,

1 + tan2θ = sec2θ

∴ sec2θ – tan2θ = 1

∴ (secθ – tanθ)(secθ + tanθ) = 1·1

∴ `(sectheta + tantheta)/1 = 1/(sectheta - tantheta)`

By the theorem of equal roots,

`(sectheta + tantheta)/1 = 1/(sectheta - tantheta)`

= `(sectheta + tantheta + 1)/(1 + sectheta - tantheta)`

= `(sectheta + tantheta - 1)/(1 - sectheta + tantheta)`

∴ `(sectheta + tantheta + 1)/(1 + sectheta - tantheta) = (sectheta + tantheta - 1)/(1 - sectheta + tantheta)`

∴ `(1 - sectheta + tantheta)/(1 + sectheta - tantheta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`.

shaalaa.com
Fundamental Identities
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×