Advertisements
Advertisements
Question
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Sum
Solution
We know that,
1 + tan2θ = sec2θ
∴ sec2θ – tan2θ = 1
∴ (secθ – tanθ)(secθ + tanθ) = 1·1
∴ `(sectheta + tantheta)/1 = 1/(sectheta - tantheta)`
By the theorem of equal roots,
`(sectheta + tantheta)/1 = 1/(sectheta - tantheta)`
= `(sectheta + tantheta + 1)/(1 + sectheta - tantheta)`
= `(sectheta + tantheta - 1)/(1 - sectheta + tantheta)`
∴ `(sectheta + tantheta + 1)/(1 + sectheta - tantheta) = (sectheta + tantheta - 1)/(1 - sectheta + tantheta)`
∴ `(1 - sectheta + tantheta)/(1 + sectheta - tantheta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`.
shaalaa.com
Fundamental Identities
Is there an error in this question or solution?