मराठी

Refer to Example 4. Solve the LPP. - Mathematics

Advertisements
Advertisements

प्रश्न

A manufacturing company makes two types of television sets; one is black and white and the other is colour. The company has resources to make at most 300 sets a week. It takes Rs 1800 to make a black and white set and Rs 2700 to make a coloured set. The company can spend not more than Rs 648000 a week to make television sets. If it makes a profit of Rs 510 per black and white set and Rs 675 per coloured set, how many sets of each type should be produced so that the company has maximum profit? Formulate this problem as a LPP given that the objective is to maximise the profit.

तक्ता
बेरीज

उत्तर

The problem is: Maximise Z = 510x + 675y

Subject to the constraints: `{:(x + y ≤ 300),(2x + 3y ≤ 720),(x ≥ 0","  y ≥ 0):}}`

The feasible region OABC is shown in the Figure

Since the feasible region is bounded

Therefore maximum of Z must occur at the corner point of OBC.

Corner Point Value of Z  
O(0, 0) 510 (0) + 675 (0) = 0  
A(300, 0) 510 (300) + 675 (0) = 153000  
B(180, 120) 510 (180) + 675 (120) = 172800 ← Maximum
C(0, 240) 510 (0) + 675 (240) = 162000  

Thus, maximum Z is 172800 at the point (180, 120), i.e., the company should produce 180 black and white television sets and 120 coloured television sets to get maximum profit.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Linear Programming - Solved Examples [पृष्ठ २४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 12 Linear Programming
Solved Examples | Q 5 | पृष्ठ २४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A company is making two products A and B. The cost of producing one unit of products A and B are Rs 60 and Rs 80 respectively. As per the agreement, the company has to supply at least 200 units of product B to its regular customers. One unit of product  A  requires one machine hour whereas product B has machine hours available abundantly within the company. Total machine hours available for product A are 400 hours. One unit of each product A and B requires one labour hour each and total of 500 labour hours are available. The company wants to minimize the cost of production by satisfying the given requirements. Formulate the problem as a LPP.


A firm manufactures two types of products A and B and sells them at a profit of Rs 2 on type A and Rs 3 on type B. Each product is processed on two machines M1 and M2. Type A requires one minute of processing time on M1 and two minutes of M2; type B requires one minute on M1 and one minute on M2. The machine M1 is available for not more than 6 hours 40 minutes while machine M2 is available for 10 hours during any working day. Formulate the problem as a LPP.


A manufacturer can produce two products, A and B, during a given time period. Each of these products requires four different manufacturing operations: grinding, turning, assembling and testing. The manufacturing requirements in hours per unit of products A and B are given below.

  A B
Grinding 1 2
Turning 3 1
Assembling 6 3
Testing 5 4


The available capacities of these operations in hours for the given time period are: grinding 30; turning 60, assembling 200; testing 200. The contribution to profit is Rs 20 for each unit of A and Rs 30 for each unit of B. The firm can sell all that it produces at the prevailing market price. Determine the optimum amount of A and B to produce during the given time period. Formulate this as a LPP.


An automobile manufacturer makes automobiles and trucks in a factory that is divided into two shops. Shop A, which performs the basic assembly operation, must work 5 man-days on each truck but only 2 man-days on each automobile. Shop B, which performs finishing operations, must work 3 man-days for each automobile or truck that it produces. Because of men and machine limitations, shop A has 180 man-days per week available while shop B has 135 man-days per week. If the manufacturer makes a profit of Rs 30000 on each truck and Rs 2000 on each automobile, how many of each should he produce to maximize his profit? Formulate this as a LPP.


A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit Rs 25 Rs 30  
Labour cost per unit Rs 16 Rs 20  
Raw material cost per unit Rs 4 Rs 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


A firm has to transport at least 1200 packages daily using large vans which carry 200 packages each and small vans which can take 80 packages each. The cost of engaging each large van is ₹400 and each small van is ₹200. Not more than ₹3000 is to be spent daily on the job and the number of large vans cannot exceed the number of small vans. Formulate this problem as a LPP given that the objective is to minimize cost


Let X1 and X2 are optimal solutions of a LPP, then


The optimal value of the objective function is attained at the points


Consider a LPP given by
Minimum Z = 6x + 10y
Subjected to x ≥ 6; y ≥ 2; 2x + y ≥ 10; xy ≥ 0
Redundant constraints in this LPP are 


If the constraints in a linear programming problem are changed


Which of the following is not a convex set?


The optimum value of the objective function of LPP occurs at the center of the feasible region.


Choose the correct alternative:

The constraint that in a college there are more scholarship holders in FYJC class (X) than in SYJC class (Y) is given by


Choose the correct alternative:

How does a constraint, “A washing machine can hold up to 8 kilograms of cloths (X)” can be given?


Tyco Cycles Ltd manufactures bicycles (x) and tricycles (y). The profit earned from the sales of each bicycle and a tricycle are ₹ 400 and ₹ 200 respectively, then the total profit earned by the manufacturer will be given as ______


By spending almost ₹ 250, Rakhi bought some kg grapes (x) and some dozens of bananas (y), then as a constraint this information can be expressed by ______


A doctor prescribed 2 types of vitamin tablets, T1 and T2 for Mr. Dhawan. The tablet T1 contains 400 units of vitamin and T2 contains 250 units of vitamin. If his requirement of vitamin is at least 4000 units, then the inequation for his requirement will be ______


Heramb requires at most 400 calories from his breakfast. Every morning he likes to take oats and milk. If each bowl of oats and a glass of milk provides him 80 calories and 50 calories respectively, then as a constraint this information can be expressed as ______


Ms. Mohana want to invest at least ₹ 55000 in Mutual funds and fixed deposits. Mathematically this information can be written as ______


Minimise Z = 3x + 5y subject to the constraints:
x + 2y ≥ 10
x + y ≥ 6
3x + y ≥ 8
x, y ≥ 0


The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5), (15, 15), (0, 20). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20) is ______.


Feasible region (shaded) for a LPP is shown in the Figure Minimum of Z = 4x + 3y occurs at the point ______.


The common region determined by all the linear constraints of a LPP is called the ______ region.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×