मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Choose the correct alternative: How does a constraint, “A washing machine can hold up to 8 kilograms of cloths (X)” can be given? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

How does a constraint, “A washing machine can hold up to 8 kilograms of cloths (X)” can be given?

पर्याय

  • X ≥ 8

  • X ≤ 8

  • X ≠ 8

  • X = 8

MCQ

उत्तर

X ≤ 8

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.6: Linear Programming - Q.1 (A)

संबंधित प्रश्‍न

A manufacturer can produce two products, A and B, during a given time period. Each of these products requires four different manufacturing operations: grinding, turning, assembling and testing. The manufacturing requirements in hours per unit of products A and B are given below.

  A B
Grinding 1 2
Turning 3 1
Assembling 6 3
Testing 5 4


The available capacities of these operations in hours for the given time period are: grinding 30; turning 60, assembling 200; testing 200. The contribution to profit is Rs 20 for each unit of A and Rs 30 for each unit of B. The firm can sell all that it produces at the prevailing market price. Determine the optimum amount of A and B to produce during the given time period. Formulate this as a LPP.


Vitamins A and B are found in two different foods F1 and F2. One unit of food F1contains 2 units of vitamin A and 3 units of vitamin B. One unit of food F2 contains 4 units of vitamin A and 2 units of vitamin B. One unit of food F1 and F2 cost Rs 50 and 25 respectively. The minimum daily requirements for a person of vitamin A and B is 40 and 50 units respectively. Assuming that any thing in excess of daily minimum requirement of vitamin A and B is not harmful, find out the optimum mixture of food F1 and F2 at the minimum cost which meets the daily minimum requirement of vitamin A and B. Formulate this as a LPP.


A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit Rs 25 Rs 30  
Labour cost per unit Rs 16 Rs 20  
Raw material cost per unit Rs 4 Rs 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


Let X1 and X2 are optimal solutions of a LPP, then


The maximum value of Z = 4x + 2y subjected to the constraints 2x + 3y ≤ 18, x + y ≥ 10 ; xy ≥ 0 is


The maximum value of Z = 4x + 3y subjected to the constraints 3x + 2y ≥ 160, 5x + 2y ≥ 200, x + 2y ≥ 80; xy ≥ 0 is


Consider a LPP given by
Minimum Z = 6x + 10y
Subjected to x ≥ 6; y ≥ 2; 2x + y ≥ 10; xy ≥ 0
Redundant constraints in this LPP are 


If the constraints in a linear programming problem are changed


A company manufactures two types of toys A and B. A toy of type A requires 5 minutes for cutting and 10 minutes for assembling. A toy of type B requires 8 minutes for cutting and 8 minutes for assembling. There are 3 hours available for cutting and 4 hours available for assembling the toys in a day. The profit is ₹ 50 each on a toy of type A and ₹ 60 each on a toy of type B. How many toys of each type should the company manufacture in a day to maximize the profit? Use linear programming to find the solution. 


State whether the following statement is True or False:

The half-plane represented by 3x + 4y ≥ 12 includes the point (4, 3)


By spending almost ₹ 250, Rakhi bought some kg grapes (x) and some dozens of bananas (y), then as a constraint this information can be expressed by ______


A doctor prescribed 2 types of vitamin tablets, T1 and T2 for Mr. Dhawan. The tablet T1 contains 400 units of vitamin and T2 contains 250 units of vitamin. If his requirement of vitamin is at least 4000 units, then the inequation for his requirement will be ______


Determine the maximum value of Z = 4x + 3y if the feasible region for an LPP is shown in figure


Feasible region (shaded) for a LPP is shown in the Figure Minimum of Z = 4x + 3y occurs at the point ______.


The common region determined by all the linear constraints of a LPP is called the ______ region.


In maximization problem, optimal solution occurring at corner point yields the ____________.


A type of problems which seek to maximise (or, minimise) profit (or cost) form a general class of problems called.


Conditions under which the object function is to be maximum or minimum are called ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×