Advertisements
Advertisements
प्रश्न
Represent the following inequalities on real number line:
2x – 1 < 5
उत्तर
2x – 1 < 5
2x < 6
x < 3
Solution on number line is
APPEARS IN
संबंधित प्रश्न
For the following inequations, graph the solution set on the real number line:
x – 1 < 3 – x ≤ 5
Represent the solution of the following inequalities on the real number line:
x + 3 ≤ 2x + 9
Use the real number line to find the range of values of x for which:
–1 < x ≤ 6 and –2 ≤ x ≤ 3
Illustrate the set {x : –3 ≤ x < 0 or x > 2; x ∈ R} on the real number line.
Solve:
`(2x + 3)/3 >= (3x - 1)/4`, where x is a positive even integer
Solve the following inequation and write down the solution set:
11x - a <15 x + 4 ≤ 12xk + 14 , x ∈ W
Represent the solution on a real number line.
Solve the following linear in-equation and graph the solution set on a real number line:
`-3 <= 1/2 - (2 "x")/3 <= 2 2/3` , x ∈ N
Solve the following inequalities and represent the solution on a number line:
4 - 2x ≥ 6 - 3x
A = {x : 11x – 5 > 7x + 3, x ∈R} and B = {x : 18x – 9 ≥ 15 + 12x, x ∈R}. Find the range of set A ∩ B and represent it on a number line
If x ∈ R (real numbers) and – 1 < 3 – 2x ≤ 7, find solution set and represent it on a number line.