मराठी

Samidha and Shreya Have Pocket Money Rs.X and Rs.Y Respectively at the Beginning of a Week. They Both Spend Money Throughout the Week. at the End of the Week, Samidha Spends Rs.500 and is Left with - Mathematics

Advertisements
Advertisements

प्रश्न

Samidha and Shreya have pocket money Rs.x and Rs.y respectively at the beginning of a week. They both spend money throughout the week. At the end of the week, Samidha spends Rs.500 and is left with as much money as Shreya had in the beginning of the week. Shreya spends Rs.500 and is left with `(3)/(5)` of what Samidha had in the beginning of the week. Find their pocket money.

बेरीज

उत्तर

Pocket money of Samidha = Rs. x
Pocket money of Sherya = Rs. y
According to given information, we have
x - 500 = y    ....(i)
⇒ x - y = 500
And, y - 500 = `(3)/(5)`x
⇒ 5y - 2500 = 3x
⇒ 5(x - 500) - 2500 = 3x
⇒ 5x - 2500 - 2500 = 3x
⇒ 2x = 5000
⇒ x = 2500
⇒ y
= 2500 - 500
= 2000
THus, pocket money of Samidha is Rs.2500 and that of Sherya is Rs.2000.

shaalaa.com
Methods of Solving Simultaneous Linear Equations by Elimination Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Simultaneous Linear Equations - Exercise 8.3

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 8 Simultaneous Linear Equations
Exercise 8.3 | Q 27

संबंधित प्रश्‍न

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
8x + 5y = 9
3x + 2y = 4


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 3y = 8
2x = 2 + 3y


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
6x = 7y + 7
7y - x = 8


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 7y = 39
3x + 5y = 31


Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:

1.5x + 0.1y = 6.2

3x - 0.4y = 11.2


Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`

`[3x + 2 ]/2 - [4y + 3]/9 = 13`   


Solve the following simultaneous equations by the substitution method:
2x + y = 8
3y = 3 + 4x


Solve the following simultaneous equations by the substitution method:
x + 3y= 5
7x - 8y = 6


Solve the following simultaneous equations by the substitution method:
2x + 3y = 31
5x - 4 = 3y


The difference of two numbers is 3, and the sum of three times the larger one and twice the smaller one is 19. Find the two numbers.


The sum of four times the first number and three times the second number is 15. The difference of three times the first number and twice the second number is 7. Find the numbers.


A father's age is three times the age of his child. After 12 years, twice the age of father will be 36 more than thrice the age of his child. Find his present age.
* Question modified


A two-digit number is such that the ten's digit exceeds thrice the unit's digit by 3 and the number obtained by interchanging the digits is 2 more than twice the sum of the digits. Find the number.


The ratio of passed and failed students in an examination was 3 : 1. Had 30 less appeared and 10 less failed, the ratio of passes to failures would have been 13 : 4. Find the number of students who appeared for the examination.


Solve by the method of elimination

x – y = 5, 3x + 2y = 25


Solve by the method of elimination

13x + 11y = 70, 11x + 13y = 74


Five years ago, a man was seven times as old as his son, while five year hence, the man will be four times as old as his son. Find their present age


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×