Advertisements
Advertisements
प्रश्न
Solve by the method of elimination
x – y = 5, 3x + 2y = 25
उत्तर
x – y = 5 → (1)
3x + 2y = 25 → (2)
(1) × 2 ⇒ 2x – 2y = 10 → (3)
(2) × 1 ⇒ 3x + 2y = 25 → (2)
(3) + (2) ⇒ 5x + 0 = 35
x = `35/5`
= 7
Substitute the value of x = 7 in (1)
x – y = 5
7 – y = 5
– y = 5 – 7
– y = – 2
y = 2
∴ The value of x = 7 and y = 2
APPEARS IN
संबंधित प्रश्न
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
0.2x + 0.1y = 25
2(x - 2) - 1.6y = 116
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0
Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`
`[3x + 2 ]/2 - [4y + 3]/9 = 13`
Solve the following pairs of linear (simultaneous) equation using method of elimination by substitution:
`x/6 + y/15 = 4`
`x/3 - y/12 = 4 3/4`
Solve the following simultaneous equations by the substitution method:
13 + 2y = 9x
3y = 7x
Solve the following simultaneous equations by the substitution method:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5
Solve the following simultaneous equations by the substitution method:
3 - (x + 5) = y + 2
2(x + y) = 10 + 2y
Solve the following simultaneous equations by the substitution method:
7(y + 3) - 2(x + 2) = 14
4(y - 2) + 3(x - 3) = 2
Solve the following pairs of equations:
`(6)/(x + y) = (7)/(x - y) + 3`
`(1)/(2(x + y)) = (1)/(3( x - y)`
Where x + y ≠ 0 and x - y ≠ 0
The difference of two numbers is 3, and the sum of three times the larger one and twice the smaller one is 19. Find the two numbers.