Advertisements
Advertisements
प्रश्न
Solve the following simultaneous equations by the substitution method:
13 + 2y = 9x
3y = 7x
उत्तर
The given equations are
13 + 2y = 9x ....(i)
3y = 7x ....(ii)
Now, consider equation
3y = 7x
⇒ y = `(7)/(3)x` ....(iii)
Substituting the value of y in eqn. (i), we get
`13 + 2(7/3 x)` = 9x
⇒ `13 + (14)/(3) x` = 13
⇒ `9x - (14)/(3) x` = 13
⇒ `(27x - 14x)/(3)` = 13
⇒ 13x = 39
⇒ x = `(39)/(13)`
= 3
Putting the value of x in eqn. (iii), we get
y = `(7)/(3) xx 3`
= 7
Thus, the solution set is (3, 7).
APPEARS IN
संबंधित प्रश्न
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 3y = 8
2x = 2 + 3y
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
0.2x + 0.1y = 25
2(x - 2) - 1.6y = 116
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0
Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`
`[3x + 2 ]/2 - [4y + 3]/9 = 13`
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
`[3x]/2 - [5y]/3 + 2 = 0`
`x/3 + y/2 = 2 1/6`
Solve the following pairs of linear (simultaneous) equation using method of elimination by substitution:
`x/6 + y/15 = 4`
`x/3 - y/12 = 4 3/4`
Solve the following simultaneous equations by the substitution method:
x + 3y= 5
7x - 8y = 6
Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41
Solve the following simultaneous equations by the substitution method:
7(y + 3) - 2(x + 2) = 14
4(y - 2) + 3(x - 3) = 2
Solve the following pairs of equations:
`(6)/(x + y) = (7)/(x - y) + 3`
`(1)/(2(x + y)) = (1)/(3( x - y)`
Where x + y ≠ 0 and x - y ≠ 0
The sum of four times the first number and three times the second number is 15. The difference of three times the first number and twice the second number is 7. Find the numbers.
The age of the father is seven times the age of the son. Ten years later, the age of the father will be thrice the age of the son. Find their present ages.
A father's age is three times the age of his child. After 12 years, twice the age of father will be 36 more than thrice the age of his child. Find his present age.
* Question modified
The ratio of passed and failed students in an examination was 3 : 1. Had 30 less appeared and 10 less failed, the ratio of passes to failures would have been 13 : 4. Find the number of students who appeared for the examination.
Solve by the method of elimination
2x – y = 3, 3x + y = 7
Solve by the method of elimination
x – y = 5, 3x + 2y = 25
Solve by the method of elimination
`x/10 + y/5` = 14, `x/8 + y/6` = 15
Solve by the method of elimination
3(2x + y) = 7xy, 3(x + 3y) = 11xy
The monthly income of A and B are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 5,000 per month, find the monthly income of each