Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives:
If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is
पर्याय
e7
e3
e12
`"e"^(3/4)`
उत्तर
e12
Explanation;
f(x) is continuous at x = 0
∴ f(0) = `lim_(x -> 0) "f"(x)`
= `lim_(x -> 0) ((4 + 5x)/(4 - 7x))^(4/x)`
= `lim_(x -> 0) [(4(1 + (5x)/4))/(4(1 - (7x)/4))]^(4/x)`
= `(lim_(x -> 0) [(1 + (5x)/4)^(4/(5x))]^5)/(lim_(x -> 0)[(1 - (7x)/4)^((-4)/(7x))]^(-7))`
= `"e"^5/"e"^(-7) ...[(because x -> 0"," (5x)/4 -> 0"," (-7x)/4 -> 0),("and" lim_(x -> 0) (1 + x)^(1/x) = "e")]`
= e12
APPEARS IN
संबंधित प्रश्न
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= 4x + 1",", "for" x ≤ 8/3),(= (59 - 9x)/3 ",", "for" x > 8/3):}} "at" x = 8/3`
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(x^2 - 1)/(x^3 + 1)` for x ≠ – 1
Discuss the continuity of the following function at the point indicated against them :
f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}} "at" x = pi/3`
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",", "for" x ≠ 0),(= (log 2)^2/2",", "for" x = 0):}}` at x = 0.
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for" x ≠ 0),(= "k"",", "for" x = 0):}` is continuous at x = 0, then ‘k’ =
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for" 3 ≤ x ≤ 6"," x ≠ 5),(= 10",", "for" x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for" 6 < x ≤ 9):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for" x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for" x = 1):}}` at x = 1
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |2x - 3| ≥ 2),(= 3x + 2",", "for" 1/2 < x < 5/2):}`
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If f(x) = `{(8-6x; 0<x≤2), (4x-12; 2<x≤3),(2x+10; 3<x≤6):}` then f(x) is ______
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for" x ≠ 0),(K",", "for" x = 0):}`
is continuous at x = 0, then K is ______.
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
If the function f(x) defined by
f(x) = `{{:(x sin 1/x",", "for" x = 0),(k",", "for" x = 0):}`
is continuous at x = 0, then k is equal to ______.
Which of the following is not continuous for all x?
The function f(x) = x – |x – x2| is ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.