मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from the given alternatives. In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate

पर्याय

  • 12

  • 288

  • 144

  • 256

MCQ

उत्तर

144

Explanation;

B G B G B G B

4 boys take their seats in 4! ways 

3 girls take their seats in 3! ways

Required number = 4! × 3!

= 24 × 6

= 144

shaalaa.com
Factorial Notation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Permutations and Combination - Miscellaneous Exercise 3.1 [पृष्ठ ६७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 3 Permutations and Combination
Miscellaneous Exercise 3.1 | Q I. (5) | पृष्ठ ६७

संबंधित प्रश्‍न

Evaluate: 8!


Evaluate: 10!


Evaluate: 10! – 6!


Compute: `(12!)/(6!)`


Compute: (3 × 2)!


Compute: `(9!)/(3!  6!)`


Compute: `(6! - 4!)/(4!)`


Compute: `(8!)/(6! - 4!)`


Compute: `(8!)/((6 - 4)!)`


Write in terms of factorial.

5 × 6 × 7 × 8 × 9 × 10


Write in terms of factorial.

3 × 6 × 9 × 12 × 15


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12


Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`


Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`


Find n, if (n + 1)! = 42 × (n – 1)!


Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!


Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6


Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1


Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1


Simplify `((2"n" + 2)!)/((2"n")!)`


Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`


Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`


Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`


In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?


Answer the following:

Find the number of words that can be formed by using all the letters in the word REMAIN If these words are written in dictionary order, what will be the 40th word?


Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______


If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.


Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×