Advertisements
Advertisements
प्रश्न
Compute: `(8!)/((6 - 4)!)`
उत्तर
`(8!)/((6 - 4)!) = (8!)/(2!)`
= `(8 xx 7 xx 6 xx 5 xx 4 xx 3 xx 2!)/(2!)`
= 20160
APPEARS IN
संबंधित प्रश्न
Evaluate: 10! – 6!
Evaluate: (10 – 6)!
Compute: `(12!)/(6!)`
Compute: (3 × 2)!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
6 × 7 × 8 × 9
Write in terms of factorial.
5 × 10 × 15 × 20
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1
Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`
Select the correct answer from the given alternatives.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?
Select the correct answer from the given alternatives.
In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate
Select the correct answer from the given alternatives.
Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.