Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?
पर्याय
3! 8!
3! 4! 8! 4!
4! 4!
8! 4! 4!
उत्तर
3! 4! 8! 4!
Explanation;
8 Indians take their seats in 8! ways 4
Americans take their seats in 4! ways 4
Englishmen take their seats in 4! Ways.
Three groups of Indians, Americans and Englishmen can be permuted in 3! ways
Required number = 3! × 8! × 4! × 4!
APPEARS IN
संबंधित प्रश्न
Evaluate: 8!
Evaluate: 10!
Evaluate: (10 – 6)!
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
6 × 7 × 8 × 9
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1
Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`
Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1
Simplify `((2"n" + 2)!)/((2"n")!)`
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`
In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?
Answer the following:
Find the number of words that can be formed by using all the letters in the word REMAIN If these words are written in dictionary order, what will be the 40th word?
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
3. 9. 15. 21 ...... upto 50 factors is equal to ______.