English

Select the correct answer from the given alternatives. In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together? - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternatives.

In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?

Options

  • 3! 8!

  • 3! 4! 8! 4!

  • 4! 4!

  • 8! 4! 4!

MCQ

Solution

3! 4! 8! 4!

Explanation;

8 Indians take their seats in 8! ways 4

Americans take their seats in 4! ways 4

Englishmen take their seats in 4! Ways.

Three groups of Indians, Americans and Englishmen can be permuted in 3! ways

Required number = 3! × 8! × 4! × 4!

shaalaa.com
Factorial Notation
  Is there an error in this question or solution?
Chapter 3: Permutations and Combination - Miscellaneous Exercise 3.1 [Page 67]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 3 Permutations and Combination
Miscellaneous Exercise 3.1 | Q I. (3) | Page 67

RELATED QUESTIONS

Evaluate: (10 – 6)!


Compute: `(12!)/(6!)`


Compute: 3! × 2!


Compute: `(6! - 4!)/(4!)`


Compute: `(8!)/(6! - 4!)`


Compute: `(8!)/((6 - 4)!)`


Write in terms of factorial.

5 × 6 × 7 × 8 × 9 × 10


Write in terms of factorial.

3 × 6 × 9 × 12 × 15


Write in terms of factorial.

6 × 7 × 8 × 9


Write in terms of factorial.

5 × 10 × 15 × 20


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6


Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!


Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6


Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1


Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`


Simplify `((2"n" + 2)!)/((2"n")!)`


Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`


Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`


Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!


Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`


Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`


Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`


Select the correct answer from the given alternatives.

Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.


Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______


If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.


Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×