Advertisements
Advertisements
Question
Select the correct answer from the given alternatives.
A college has 7 courses in the morning and 3 in the evening. The possible number of choices with the student if he wants to study one course in the morning and one in the evening is -
Options
21
4
42
10
Solution
A college has 7 courses in the morning and 3 in the evening. The possible number of choices with the student if he wants to study one course in the morning and one in the evening is - 21
APPEARS IN
RELATED QUESTIONS
A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?
How many numbers between 100 and 1000 have 4 in the units place?
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
A letter lock contains 3 rings, each ring containing 5 different letters. Determine the maximum number of false trials that can be made before the lock is opened?
In a test, 5 questions are of the form 'state, true or false'. No student has got all answers correct. Also, the answer of every student is different. Find the number of students appeared for the test.
How many numbers between 100 and 1000 have the digit 7 exactly once?
A school has three gates and four staircases from the first floor to the second floor. How many ways does a student have to go from outside the school to his classroom on the second floor?
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 5 if digits are not repeated?
How many words can be formed by writing letters in the word CROWN in different order?
There are 3 types of toy car and 2 types of toy train available in a shop. Find the number of ways a baby can buy a toy car and a toy train?
Three persons enter into a conference hall in which there are 10 seats. In how many ways they can take their seats?
Given four flags of different colours, how many different signals can be generated if each signal requires the use of three flags, one below the other?
Four children are running a race:
In how many ways can the first two places be filled?
How many three-digit numbers are there with 3 in the unit place?
without repetition
How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5? if repetition of digits allowed
How many three-digit numbers, which are divisible by 5, can be formed using the digits 0, 1, 2, 3, 4, 5 if repetition of digits are not allowed?
To travel from a place A to place B, there are two different bus routes B1, B2, two different train routes T1, T2 and one air route A1. From place B to place C there is one bus route say B1, two different train routes say T1, T2 and one air route A1. Find the number of routes of commuting from place A to place C via place B without using similar mode of transportation
How many strings can be formed using the letters of the word LOTUS if the word either starts with L or ends with S?
In how many ways 10 pigeons can be placed in 3 different pigeon holes?
Find the number of ways of distributing 12 distinct prizes to 10 students?
Find the value of 4! + 5!
Find the value of 3! × 2!
Find the value of `(("n" + 3)!)/(("n" + 1)!)`
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 10, r = 3
Find the value of n if `1/(8!) + 1/(9!) = "n"/(10!)`
Choose the correct alternative:
The sum of the digits at the 10th place of all numbers formed with the help of 2, 4, 5, 7 taken all at a time is
Choose the correct alternative:
The number of 5 digit numbers all digits of which are odd i
Choose the correct alternative:
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is
All the letters of the word PADMAPRIYA are placed at random in a row. The probability that the word PRIY A occurs without getting split is ______
Find the number of integers greater than 7000 that can be formed with the digits 3, 5, 7, 8 and 9 where no digits are repeated.
The number of possible outcomes when a coin is tossed 6 times is ______.
The number of six-digit numbers, all digits of which are odd is ______.
There will be only 24 selections containing at least one red ball out of a bag containing 4 red and 5 black balls. It is being given that the balls of the same colour are identical.