Advertisements
Advertisements
Question
A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?
Solution
When a coin is tossed once, the number of outcomes is 2 (Head and tail), i.e., in each throw, the number of ways of showing a different face is 2.
Thus, by multiplication principle, the required number of possible outcomes is 2 × 2 × 2 = 8
APPEARS IN
RELATED QUESTIONS
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is allowed?
How many 4-letter code can be formed using the first 10 letters of the English alphabet, if no letter can be repeated?
A Signal is generated from 2 flags by putting one flag above the other. If 4 flags of different colours are available, how many different signals can be generated?
How many two letter words can be formed using letters from the word SPACE, when repetition of letters is allowed?
How many two-letter words can be formed using letters from the word SPACE, when repetition of letters is not allowed?
How many numbers between 100 and 1000 have 4 in the units place?
How many two letter words can be formed using letters from the word SPACE, when repetition of letters is not allowed?
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
A school has three gates and four staircases from the first floor to the second floor. How many ways does a student have to go from outside the school to his classroom on the second floor?
There are 3 types of toy car and 2 types of toy train available in a shop. Find the number of ways a baby can buy a toy car and a toy train?
Four children are running a race:
In how many different ways could they finish the race?
Count the number of three-digit numbers which can be formed from the digits 2, 4, 6, 8 if repetitions of digits is allowed
How many three-digit numbers are there with 3 in the unit place?
without repetition
How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5? if repetition of digits allowed
Count the numbers between 999 and 10000 subject to the condition that there are no restriction
Count the numbers between 999 and 10000 subject to the condition that there are no digit is repeated
To travel from a place A to place B, there are two different bus routes B1, B2, two different train routes T1, T2 and one air route A1. From place B to place C there is one bus route say B1, two different train routes say T1, T2 and one air route A1. Find the number of routes of commuting from place A to place C via place B without using similar mode of transportation
How many strings can be formed using the letters of the word LOTUS if the word either starts with L or ends with S?
In how many ways 10 pigeons can be placed in 3 different pigeon holes?
Find the number of ways of distributing 12 distinct prizes to 10 students?
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 6, r = 2
Find the value of n if (n + 1)! = 20(n − 1)!
Find the value of n if `1/(8!) + 1/(9!) = "n"/(10!)`
Choose the correct alternative:
In an examination there are three multiple choice questions and each question has 5 choices. Number of ways in which a student can fail to get all answer correct i
Choose the correct alternative:
The number of five digit telephone numbers having at least one of their digits repeated i
Choose the correct alternative:
The number of 10 digit number that can be written by using the digits 2 and 3 is
Eight chairs are numbered 1 to 8. Two women and 3 men wish to occupy one chair each. First the women choose the chairs from amongst the chairs 1 to 4 and then men select from the remaining chairs. Find the total number of possible arrangements.
Out of 18 points in a plane, no three are in the same line except five points which are collinear. Find the number of lines that can be formed joining the point
Find the number of positive integers greater than 6000 and less than 7000 which are divisible by 5, provided that no digit is to be repeated.
Find the number of integers greater than 7000 that can be formed with the digits 3, 5, 7, 8 and 9 where no digits are repeated.
The number of possible outcomes when a coin is tossed 6 times is ______.
In a steamer there are stalls for 12 animals, and there are horses, cows and calves (not less than 12 each) ready to be shipped. They can be loaded in 312 ways.
If the number of five-digit numbers with distinct digits and 2 at the 10th place is 336 k, then k is equal to ______.