Advertisements
Advertisements
Question
A Signal is generated from 2 flags by putting one flag above the other. If 4 flags of different colours are available, how many different signals can be generated?
Solution
A signal is generated from 2 flags and there are 4 flags of different colours available.
∴ 1st flag can be any one of the available 4 flags.
∴ It can be selected in 4 ways.
Now, the 2nd flag is to be selected for which 3 flags are available for a different signal.
∴ 2nd flag can be anyone from these 3 flags.
∴ It can be selected in 3 ways.
∴ By using the fundamental principle of multiplication,
Total number of ways in which a signal can be generated = 4 × 3 = 12
∴ 12 different signals can be generated.
APPEARS IN
RELATED QUESTIONS
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is allowed?
How many 4-letter code can be formed using the first 10 letters of the English alphabet, if no letter can be repeated?
Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?
A Signal is generated from 2 flags by putting one flag above the other. If 4 flags of different colours are available, how many different signals can be generated?
How many words can be formed by writing letters in the word CROWN in different order?
Answer the following:
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
Three persons enter into a conference hall in which there are 10 seats. In how many ways they can take their seats?
How many three-digit odd numbers can be formed by using the digits 0, 1, 2, 3, 4, 5? if the repetition of digits is allowed
To travel from a place A to place B, there are two different bus routes B1, B2, two different train routes T1, T2 and one air route A1. From place B to place C there is one bus route say B1, two different train routes say T1, T2 and one air route A1. Find the number of routes of commuting from place A to place C via place B without using similar mode of transportation
Count the total number of ways of answering 6 objective type questions, each question having 4 choices
Find the value of `(12!)/(9! xx 3!)`
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 6, r = 2
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 10, r = 3
Find the value of n if (n + 1)! = 20(n − 1)!
Choose the correct alternative:
The number of 5 digit numbers all digits of which are odd i
Choose the correct alternative:
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is
How many numbers are there between 99 and 1000 having atleast one of their digits 7?
In an examination there are three multiple choice questions and each question has 4 choices. Number of ways in which a student can fail to get all answer correct is ______.
If the letters of the word RACHIT are arranged in all possible ways as listed in dictionary. Then what is the rank of the word RACHIT?