Advertisements
Advertisements
Question
Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
Solution
`1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
= `1/("n"("n" - 1)("n" - 2)!) - 1/(("n" - 1)("n" - 2)!) - 1/(("n" - 2)!)`
= `1/(("n" - 2)!) [1/("n"("n" - 1)) - 1/(("n" - 1)) - 1]`
= `1/(("n" - 2)!) [(1 - "n" - "n"("n" - 1))/("n"("n" - 1))]`
= `(1 - "n"^2)/("n"("n" - 1)("n" - 2)!)`
= `(-("n" - 1)("n" + 1))/("n"("n" - 1)("n" - 2)!)`
= `(-("n" + 1))/("n"("n" - 2)!)`
APPEARS IN
RELATED QUESTIONS
Evaluate: 8!
Evaluate: 10!
Evaluate: (10 – 6)!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(9!)/(3! 6!)`
Compute: `(8!)/(6! - 4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
6 × 7 × 8 × 9
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`
Select the correct answer from the given alternatives.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?
Select the correct answer from the given alternatives.
In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
3. 9. 15. 21 ...... upto 50 factors is equal to ______.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.