Advertisements
Advertisements
Question
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Solution
`"n"/(8!) = 3/(6!) + (1!)/(4!)`
∴ `"n"/(8!) = 3/(6 xx 5 xx 4!) + 1/(4!)`
∴ `"n"/(8 xx 7 xx 6 xx 5 xx 4!) = 1/(4!)[1/10 + 1]`
∴ `"n"/(8 xx 7 xx 6 xx 5) = 11/10`
∴ n = `(8 xx 7 xx 6 xx 5 xx 11)/10`
∴ n = 1848.
APPEARS IN
RELATED QUESTIONS
Evaluate: 10! – 6!
Evaluate: (10 – 6)!
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
6 × 7 × 8 × 9
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Simplify `((2"n" + 2)!)/((2"n")!)`
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!
Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Select the correct answer from the given alternatives.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?
Select the correct answer from the given alternatives.
Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
3. 9. 15. 21 ...... upto 50 factors is equal to ______.